题目内容

如图,在正方形纸片ABCD中,对角线AC,BD交于点O,折叠正方形纸片ABCD,使AD落在BD上,点A恰好与BD上的点F重合.展开后,折痕DE分别交AB,AC于点E,G.连接GF.下列结论:①∠AGD=112.5°;②tan∠AED=2;③S△AGD=S△OGD;④四边形AEFG是菱形;⑤BE=2OG.其中正确结论的个数是(  )
A.1B.2C.3D.4

因为∠GAD=45°,由折叠可知:∠ADG=∠ODG=22.5°.故:
①∠AGD=180°-45°-22.5°=112.5°正确;
②设OG=1,则AG=GF=
2

又∠BAG=45°,∠AGE=67.5°,∴∠AEG=67.5°,
∴AE=AG=
2
,则AC=2AO=2(
2
+1),
∴AD=
2(
2
+1)
2
=2+
2

tan∠AED=
AD
AE
=
2
+1,错误;
③由折叠可知:AG=FG,在直角三角形GOF中,
斜边GF>直角边OG,故AG>OG,两三角形的高相同,
则S△AGD>S△OGD,故错误;
④中,AE=EF=FG=AG,故正确;
⑤∵GF=EF,
∴BE=
2
EF=
2
GF=
2
2
OG=2OG,
∴BE=2OG
故正确.
故选C.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网