题目内容

【题目】如图,在正方形网格中,每个小正方形的边长都是1,每个小正方形的顶点叫做格点.网格中有一个格点ABC(即三角形的顶点都在格点上).

1)在图中作出ABC关于直线l对称的A1B1C1 (要求AA1BB1CC1相对应);

2)求ABC的面积;

3)在直线l上找一点P,使得PAC的周长最小.

【答案】(1)作图见解析;(2)5;(3)点P即为所求的点.

【解析】试题分析:(1)根据轴对称性作△ABC中顶点A,B,C关于直线l的对称点A1,B1,C1,然后再连接A1,B1,C1可得△A1B1C1,(2)利用割补法求△ABC的面积,利用过△ABC各顶点的矩形减去三个直角三角形的面积可求解,(3)要在直线l要上找到一点P,使△PAC周长最短,因为AC长为定值,所以要使△PAC周长最短,则使PA+PC的和最短,可作C关于直线l的对称点C1,连接A C1, A C1与直线l的交点即为所求的点P.

试题解析:(1)所作图形如图所示,

(2) ,所以△ABC的面积为5,

(3)连接A C1,A C1与直线l的交点P即为所求的点.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网