题目内容
【题目】甲乙二人在环形跑道上同时同地出发,同向运动.若甲的速度是乙的速度的2倍,则甲运动2周,甲、乙第一次相遇;若甲的速度是乙的速度3倍,则甲运动 周,甲、乙第一次相遇;若甲的速度是乙的速度4倍,则甲运动 周,甲、乙第一次相遇,…,以此探究正常走时的时钟,时针和分针从0点(12点)同时出发,分针旋转周,时针和分针第一次相遇.
【答案】
【解析】解:设分针旋转x周后,时针和分针第一次相遇,则时针旋转了(x﹣1)周,
根据题意可得:60x=720(x﹣1),
解得:x= .
故答案为: .
此题主要考查了一元一次方程的应用,根据题意结合时针与分针转动的时间得出等式是解题关键.直接利用时针和分针第一次相遇,则时针比分针少转了一周,再利用分针转动一周60分钟,时针转动一周720分钟,进而得出等式求出答案.
练习册系列答案
相关题目
【题目】随着私家车拥有量的增加,停车问题已经给人们的生活带来了很多不便.为了缓解停车矛盾,某小区开发商欲投资16万元,建造若干个停车位,考虑到实际因素,计划露天车位的数量不少于室内车位的2倍,但不超过室内车位的3倍.据测算,建造费用及年租金如下表:
类别 | 室内车位 | 露天车位 |
建造费用(元/个) | 5 000 | 1 000 |
年租金(元/个) | 2 000 | 800 |
(1)该开发商有哪几种符合题意的建造方案?写出解答过程.
(2)若按表中的价格将两种车位全部出租,哪种方案获得的年租金最多?并求出此种方案的年租金.(不考虑其他费用)