题目内容
【题目】如图,直线AB、CD相交于点O,EO⊥AB,垂足为O,∠EOC:∠AOD=7:11,求∠DOE的度数.
【答案】解:∵EO⊥AB,
∴∠EOA=90°,
∴∠EOC+∠AOD=90°,
∵∠EOC:∠AOD=7:11,
∴∠AOD=90°× =55°,
∴∠DOE=∠EOA+∠AOD=90°+55°=145°,
答:∠DOE的度数是145°.
【解析】根据垂直定义可得∠EOA=90°,根据对顶角相等可得∠EOC+∠AOD=90°,再根据条件∠EOC:∠AOD=7:11可算出∠AOD的度数,进而可得∠DOE的度数.
【考点精析】解答此题的关键在于理解垂线的性质的相关知识,掌握垂线的性质:1、过一点有且只有一条直线与己知直线垂直.2、垂线段最短.
练习册系列答案
相关题目