题目内容
【题目】如图,点D是⊙O上一点,直线AE经过点D,直线AB经过圆心O,交⊙O于B,C两点,CE⊥AE,垂足为点E,交⊙O于点F,∠BCD=∠DCF
(1)求∠A+∠BOD的度数;
(2)若sin∠DCE=,⊙O的半径为5,求线段AB的长.
【答案】(1)详见解析;(2).
【解析】
(1)由OC=OD,得出∠OCD=∠ODC,而∠BCD=∠DCF,等量代换得到∠ODC=∠DCF,那么OD∥CE,由CE⊥AD,得出OD⊥AD,所以∠A+∠BOD=90°;
(2)连接BD.由圆周角定理得出∠BDC=90°,解直角△BCD,求出BD=6,CD==8.再解Rt△DCE,求出DE=,EC=.再由DO∥EC,得出,即,即可求出AB=.
(1)∵OC=OD,
∴∠OCD=∠ODC,
∵∠BCD=∠DCF,
∴∠ODC=∠DCF,
∴OD∥CE,
∵CE⊥AD,
∴OD⊥AD,
∴∠A+∠BOD=90°;
(2)连接BD,如图.
∵BC是⊙O的直径,
∴∠BDC=90°,
∵∠BCD=∠DCF,sin∠DCE=,
∴sin∠BCD=,
∵⊙O的半径为5,
∴BC=10,
∴BD=6,
∴CD==8.
在Rt△DCE中,sin∠DCE=,
∴DE=,
∴EC=.
∵DO∥EC,
∴,即,
∴AB=.
练习册系列答案
相关题目