题目内容
【题目】如图,在等边三角形ABC中,点D,E分别在边BC,AC上,DE∥AB,过点E作EF⊥DE,交BC的延长线于点F.
(1)求∠F的度数;
(2)若CD=2,求DF的长.
【答案】(1)、30°;(2)、4.
【解析】
试题分析:(1)、根据等边三角形的性质得出∠B=60°,根据DE∥AB得出∠EDC=60°,根据垂直得出∠DEF=90°,根据三角形内角和定理可得∠F的度数;(2)、根据∠ACB=∠EDC=60°得出△EDC为等边三角形,则ED=DC=2,根据∠DEF=90°,∠F=30°得出DF=2DE=4.
试题解析:(1)、∵△ABC是等边三角形, ∴∠B=60°, ∵DE∥AB, ∴∠EDC=∠B=60°
∵EF⊥DE, ∴∠DEF=90°, ∴∠F=90°﹣∠EDC=30°
(2)、∵∠ACB=60°,∠EDC=60°, ∴△EDC是等边三角形.∴ED=DC=2,
∵∠DEF=90°,∠F=30° ∴DF=2DE=4.
练习册系列答案
相关题目