题目内容
已知二次函数y=x2-2(R+r)x+d2与x轴没有交点,其中R、r分别为⊙01,⊙02的半径,d为两圆的圆心距,则⊙01与⊙02的位置关系是( )A.外离
B.相交
C.外切
D.内切
【答案】分析:一元二次方程没有实数根,即△<0,从而得出R、r与d的关系式,针对两圆位置关系与圆心距d,两圆半径R,r的数量关系间的联系得出两圆位置关系.
解答:解:依题意,4(R+r)2-4d2<0,
即(R+r)2-d2<0,
则:(R+r+d)(R+r-d)<0.
∵R+r+d>0,
∴R+r-d<0,
即:d>R+r,
所以两圆外离.
故选:A.
点评:此题考查了一元二次方程根的判别式和圆与圆的位置关系,同时考查了学生的综合应用能力及推理能力.
解答:解:依题意,4(R+r)2-4d2<0,
即(R+r)2-d2<0,
则:(R+r+d)(R+r-d)<0.
∵R+r+d>0,
∴R+r-d<0,
即:d>R+r,
所以两圆外离.
故选:A.
点评:此题考查了一元二次方程根的判别式和圆与圆的位置关系,同时考查了学生的综合应用能力及推理能力.
练习册系列答案
相关题目
已知二次函数y=x2+(2a+1)x+a2-1的最小值为0,则a的值是( )
A、
| ||
B、-
| ||
C、
| ||
D、-
|
已知二次函数y=-x2+2x+m的部分图象如图所示,则关于x的一元二次方程-x2+2x+m=0的解为( )
A、x1=1,x2=3 | B、x1=0,x2=3 | C、x1=-1,x2=1 | D、x1=-1,x2=3 |