题目内容
【题目】如图,AB是⊙O的直径,C,D是⊙O上的点,∠CDB=30°,过点C作⊙O的切线交AB的延长线于点E,则sin∠E的值是( )
A.
B.
C.
D.
【答案】A
【解析】解:连接OC,如图,
∠BOC=2∠CDB=60°,
∵CE为切线,
∴OC⊥CE,
∴∠OCE=90°,
∴∠E=30°,
∴sinE=sin30°= .
所以答案是:A.
【考点精析】通过灵活运用圆周角定理和切线的性质定理,掌握顶点在圆心上的角叫做圆心角;顶点在圆周上,且它的两边分别与圆有另一个交点的角叫做圆周角;一条弧所对的圆周角等于它所对的圆心角的一半;切线的性质:1、经过切点垂直于这条半径的直线是圆的切线2、经过切点垂直于切线的直线必经过圆心3、圆的切线垂直于经过切点的半径即可以解答此题.
练习册系列答案
相关题目