题目内容
已知:四边形ABCD中,AD∥BC,AD=AB=CD,∠BAD=120°,点E是射线CD上的一个动点(与C、D不重合),将△ADE绕点A顺时针旋转120°后,得到△ABE',连接EE'.
(1)如图1,∠AEE'= °;
(2)如图2,如果将直线AE绕点A顺时针旋转30°后交直线BC于点F,过点E作EM∥AD交直线AF于点M,写出线段DE、BF、ME之间的数量关系;
(3)如图3,在(2)的条件下,如果CE=2,AE=,求ME的长.
(1)如图1,∠AEE'= °;
(2)如图2,如果将直线AE绕点A顺时针旋转30°后交直线BC于点F,过点E作EM∥AD交直线AF于点M,写出线段DE、BF、ME之间的数量关系;
(3)如图3,在(2)的条件下,如果CE=2,AE=,求ME的长.
(1)∠AEE'=30°;
(2)当点E在线段CD上时,;
当点E在CD的延长线上时,
时,;
时,;
时,;
(3) .
(2)当点E在线段CD上时,;
当点E在CD的延长线上时,
时,;
时,;
时,;
(3) .
试题分析:(1)根据旋转性质及三角形内角和定理即可;
(2)根据题意得到AN=E'N,EN=NE',再ME∥BC,得到,从而得到线段DE、BF、ME之间的数量关系;
(3)通过作辅助线,求出,再由(2)的结论得到ME的长.
试题解析:(1)根据题意知:AE=AE' ,∠E'AE=120°,所以∠AEE'=30°;
(2)当点E在线段CD上时,设AF与EE'相交于N,
∵∠E'AE=120°,∠EAF=30°,
∴∠E'AN=90°,∠AE'N=30°,
∴AN=E'N,
∵∠NAE=∠NEA=30°,
∴AN=EN,即EN=NE',
∵ME∥BC
∴△MNE∽△FNE'
∴,而E'B=DE,
∴;
同理:当点E在CD的延长线上,
时,;
时,;
时,;
(3)作于点G, 作于点H.
由AD∥BC,AD=AB=CD,∠BAD=120°,得∠ABC=∠DCB=60°,
易知四边形AGHD是矩形和两个全等的直角三角形.
则GH="AD" , BG=CH.
∵,
∴点、B、C在一条直线上.
设AD=AB=CD=x,则GH=x,BG=CH=,.
作于Q.
在Rt△EQC中,CE="2," ,
∴, .
∴E'Q=.
作于点P.
∵△ADE绕点A顺时针旋转120°后,得到△ABE'.
∴△AEE'是等腰三角形,.
∴在Rt△APE'中,E'P=.
∴EE'=2E'P=.
∴在Rt△EQ E'中,E'Q=.
∴.
∴.
∴,.
∴
在Rt△E'AF中,,
∴Rt△AG E'∽Rt△FA E'.
∴
∴.
∴.
由(2)知:
∴.
练习册系列答案
相关题目