题目内容
【题目】(1)如图,已知∠MAN=120°,AC平分∠MAN,∠ABC=∠ADC=90°,则能得到如下两个结论:①DC=BC;②AD+AB=AC. 请你证明结论②.
(2)如图,把(1)中的条件“∠ABC=∠ADC=90°”改为∠ABC+∠ADC=180°,其他条件不变,则(1)中的结论是否仍然成立?若成立,请给出证明;若不成立,请说明理由.
(3)如图3,如果D在AM的反向延长线上,把(1)中的条件“∠ABC=∠ADC=90°”改为∠ABC=∠ADC,其他条件不变,(1)中的结论是否仍然成立?若成立,请直接回答;若不成立,你又能得出什么结论,直接写出你的结论.
【答案】(1)见解析;(2)(1)中的结论仍然成立,证明见解析;(3)①DC=BC成立;②不成立,AB﹣AD=AC.
【解析】
(1)由已知易证得△ADC≌△ABC,可得AD=AB,根据已知可得∠ACD=30°可得AC=2AD,即可得结论.
(2)以上结论仍成立;作辅助线CE⊥AD,CF⊥AB,首先证得△ACF≌△ACE,可得CF=CE,即可证得△CFB≌△CED,即可得(1)中结论.
(3)同(2)理作辅助线可得DC=BC成立,AB﹣AD=AC.
解:(1)∵AC平分∠MAN,
∴∠DAC=∠BAC=60°,
∵∠ABC=∠ADC=90°,AC为公共边,
∴△ADC≌△ABC(AAS),
∴AD=AB,DC=BC①;
∵∠DCA=30°,
∴AC=2AD=AD+AB②;
(2)如图:作辅助线CF⊥AB,CE⊥AD,
∵AC平分∠MAN,
∴∠DAC=∠BAC=60°,
又∵CF⊥AB,CE⊥AD,且AC为公共边,
∴△ACF≌△ACE(AAS),即CF=CE①;
∵∠ABC+∠ADC=180°,∠MAN=120°,
∴∠DCB=180°﹣120°=60°,
∵在直角三角形AFC中∠ACF=30°,
∴∠DCA+∠FCB=30°,
∵在直角三角形AEC中∠DCA+∠DCE=30°,
∴∠FCB=∠DCE②;
由CE⊥AD,CF⊥AB,且已证得条件①②,
∴△CED≌△CFB(ASA),
∴DC=BC;ED=FB;
∵在直角△ACF中,AC=2AF,在直角△ACE中,AC=2AE,即AC=AE+AF,
已证得ED=FB,
∴AC=AD+AB;
(3)①DC=BC成立;②不成立,AB﹣AD=AC.
故答案为:(1)见解析;(2)(1)中的结论仍然成立,证明见解析;(3)①DC=BC成立;②不成立,AB﹣AD=AC.
【题目】某公司有A、B两种型号的客车,它们的载客量、每天的租金如表所示:
A型号客车 | B型号客车 | |
载客量(人/辆) | 30 | 45 |
租金(元/辆) | 450 | 600 |
已知某中学计划租用两种型号的客车共10辆送七年级师生去某地参加社会实践活动,已知该中学租车的总费用不超过5600元.
(1)求最多能租用多少辆B型号客车?
(2)若七年级师生共有380人,请写出所有可能的租车方案.