题目内容
【题目】操作与探究:
(1)对数轴上的点P进行如下操作:先把点P表示的数乘以,再把所得数对应的点向右平移1个单位,得到点P的对应点P′.
点A,B在数轴上,对线段AB上的每个点进行上述操作后得到线段A′B′,其中点A,B的对应点分别为A′,B′.如图1,若点A表示的数是﹣3,则点A′表示的数是 ;若点B′表示的数是2,则点B表示的数是 ;已知线段AB上的点E经过上述操作后得到的对应点E′与点E重合,则点E表示的数是 .
(2)如图2,在平面直角坐标系xOy中,对正方形ABCD及其内部的每个点进行如下操作:把每个点的横、纵坐标都乘以同一个实数a,将得到的点先向右平移m个单位,再向上平移n个单位(m>0,n>0),得到正方形A′B′C′D′及其内部的点,其中点A,B的对应点分别为A′,B′.已知正方形ABCD内部的一个点F经过上述操作后得到的对应点F′与点F重合,求点F的坐标.
【答案】(1)0,3, ;(2)F点的坐标为(1,4).
【解析】试题分析:(1)根据题目规定,以及数轴上的数向右平移的计算规则即可求出点A′;根据点B′表示的数,逆用规定运算即可得;设点E表示的数为b,根据题意列出方程计算即可得解;
(2)先根据向上平移横坐标不变,纵坐标加,向右平移横坐标加,纵坐标不变求出平移规律,然后设点F的坐标为(x,y),根据平移规律列出方程组求解即可.
试题解析:(1)A′:-3× +1=0;B:(2-1)÷ =3;E:设点E表示的数为b,则有,b= +1,解得b= ;
(2)根据题意n=2,-3a+m=-1,3a+m=2.∴a=,m=,n=2.
设F(x,y).根据题意,得 ,解得,
∴F点的坐标为(1,4).
【题目】“六一”儿童节,某玩具超市设立了一个如图所示的可以自由转动的转盘,开展有奖购买活动.顾客购买玩具就能获得一次转动转盘的机会,当转盘停止时,指针落在哪一区域就可以获得相应奖品.下表是该活动的一组统计数据.下列说法不正确的是( )
转动转盘的次数n | 100 | 150 | 200 | 500 | 800 | 1000 |
落在“铅笔”区域的次数m | 68 | 108 | 140 | 355 | 560 | 690 |
落在“铅笔”区域的频率 | 0.68 | 0.72 | 0.70 | 0.71 | 0.70 | 0.69 |
A. 当n很大时,估计指针落在“铅笔”区域的频率大约是0.70
B. 假如你去转动转盘一次,获得铅笔的概率大约是0.70
C. 如果转动转盘2000次,指针落在“文具盒”区域的次数大约有600次
D. 转动转盘10次,一定有3次获得文具盒
【题目】某学校环保志愿者协会对该市城区的空气质量进行调查,从全年365天中随机抽取了80天的空气质量指数(AQI)数据,绘制出三幅不完整的统计图表.请根据图表中提供的信息解答下列问题:
AQI指数 | 质量等级 | 天数(天) |
0﹣50 | 优 | m |
51﹣100 | 良 | 44 |
101﹣150 | 轻度污染 | n |
151﹣200 | 中度污染 | 4 |
201﹣300 | 重度污染 | 2 |
300以上 | 严重污染 | 2 |
(1 )统计表中m= ,n= .扇形统计图中,空气质量等级为“良”的天数占 %;
(2)补全条形统计图,并通过计算估计该市城区全年空气质量等级为“优”和“良”的天数共多少天?
(3)据调查,严重污染的2天发生在春节期间,燃放烟花爆竹成为空气污染的一个重要原因,据此,请你提出一条合理化建议.