题目内容
【题目】如图,在平面直角坐标系中,直线y=-x+2分别交x轴、y轴于点A、B,抛物线y=﹣x2+bx+c经过点A、B.点P是x轴上一个动点,过点P作垂直于x轴的直线分别交抛物线和直线AB于点E和点F.设点P的横坐标为m.
(1)点A的坐标为 .
(2)求这条抛物线所对应的函数表达式.
(3)点P在线段OA上时,若以B、E、F为顶点的三角形与△FPA相似,求m的值.
(4)若E、F、P三个点中恰有一点是其它两点所连线段的中点(三点重合除外),称E、F、P三点为“共谐点”.直接写出E、F、P三点成为“共谐点”时m的值.
【答案】(1)(4,0)(2)y=﹣x2+x+2(3),(4)﹣1或﹣或
【解析】
(1)令y=0,即可求出交点坐标,
(2)将A(4,0),B(0,2)代入y=﹣x2+bx+c中,即可求出函数解析式,(3)根据分类讨论,得得,即可求解,(4)根据当F为线段PE的中点时,当P为线段FE的中点时,当E为线段FP的中点时分类讨论解题即可.
(1)在y=-x+2中,令y=0,则x=4,
∴A(4,0);
故答案为:(4,0);
(2)∵在y=-x+2中,令x=0,则y=2,
∴B(0,2),
把A(4,0),B(0,2)代入y=﹣x2+bx+c,得b=,
∴这条抛物线所对应的函数表达式为y=﹣x2+x+2;
(3)∵P(m,0),E(m,﹣m2+m+2),F(m,﹣m+2),
∵且∠BFE=∠AEP,
∴∠BEP=∠APF=90°或∠EBF=∠APF=90°,
则有BE⊥PE,
∴E点的纵坐标为2,
∴解得m=0(舍去)或m=,
如图1,过点E作EC⊥y轴于点C,
则∠EBC+∠BEC=90°,EC=m,BC=﹣m2+m+2﹣2=﹣m2+m,
∵∠EBF=90°,
∴∠EBC+∠ABO=90°,
∴∠ABO=∠BEC,
∴Rt△ECB∽Rt△BOA,
∴,
∴,解得m=0(舍去)或m=,
解得,m=,
综上所述,以B、E、F为顶点的三角形与△FPA相似,m的值=,
(4)由(1)知,P(m,0),E(m,﹣m2+m+2),F(m,﹣m+2),
∵E、F、P三点为“共谐点”,
∴有F为线段PE的中点、P为线段FE的中点或E为线段PF的中点,
当F为线段PE的中点时,则有2(﹣m+2)=﹣m2+m+2,解得m=4(三点重合,舍去)或m=;
当P为线段FE的中点时,则有﹣m+2+(﹣m2+m+2)=0,解得m=4(舍去)或m=﹣1;
当E为线段FP的中点时,则有﹣m+2=2(﹣m2+m+2),解得m=4(舍去)或m=﹣;
综上可知当E、F、P三点成为“共谐点”时m的值为﹣1或﹣或.