题目内容
【题目】在△ABC中,AB=AC,D是线段BC的延长线上一点,以AD为一边在AD的右侧作△ADE,使AE=AD,∠DAE=∠BAC,连接CE.
(1)如图1,点D在线段BC的延长线上移动,若∠BAC=30°,则∠DCE= .
(2)设∠BAC=α,∠DCE=β:
①如图1,当点D在线段BC的延长线上移动时,α与β之间有什么数量关系?请说明理由;
②当点D在直线BC上(不与B、C重合)移动时,α与β之间有什么数量关系?请直接写出你的结论.
【答案】(1)30°;(2)①当点D在线段BC的延长线上移动时,α与β之间的数量关系是α=β;②当D在线段BC上时,α+β=180°,当点D在线段BC延长线或反向延长线上时,α=β.
【解析】
(1)证△BAD≌△CAE,推出∠B=∠ACE,根据三角形外角性质求出即可;
(2)①证△BAD≌△CAE,推出∠B=∠ACE,根据三角形外角性质求出即可;②分D在线段BC上时和当点D在线段BC延长线或反向延长线上时两种情况求解即可.
(1)解:(1)∵∠DAE=∠BAC,
∴∠DAE+∠CAD=∠BAC+∠CAD,
∴∠BAD=∠CAE,
在△BAD和△CAE中,
,
∴△BAD≌△CAE(SAS),
∴∠B=∠ACE,
∵∠ACD=∠B+∠BAC=∠ACE+∠DCE,
∴∠BAC=∠DCE,
∵∠BAC=30°,
∴∠DCE=30°.
故答案为30;;
(2)①解:当点D在线段BC的延长线上移动时,α与β之间的数量关系是α=β,
理由是:
∵∠DAE=∠BAC,
∴∠DAE+∠CAD=∠BAC+∠CAD,
∴∠BAD=∠CAE,
在△BAD和△CAE中
∵,
∴△BAD≌△CAE(SAS),
∴∠B=∠ACE,
∵∠ACD=∠B+∠BAC=∠ACE+∠DCE,
∴∠BAC=∠DCE,
∵∠BAC=α,∠DCE=β,
∴α=β;
②解:当D在线段BC上时,α+β=180°,
理由如下:
∵∠BAC=∠DAE,
∴∠BAD=∠CAE;
在△BAD与△CAE中,
,
∴△BAD≌△CAE(SAS),
∴∠B=∠ACE,
∴β=∠ABC+∠ACB,
∵∠ABC+∠ACB=180°-α,
∴α+β=180°.
故答案为α+β=180°;
当点D在线段BC延长线或反向延长线上时,α=β,证明如①.
∴当D在线段BC上时,α+β=180°,当点D在线段BC延长线或反向延长线上时,α=β.