题目内容
【题目】综合题。
(1)计算:2﹣1+(2π﹣1)0﹣ ﹣sin45°﹣ tan30°
(2)解方程:x2+4x﹣1=0.
【答案】
(1)解:原式= +1﹣ ﹣ ﹣ ×
= +1﹣ ﹣1
= ﹣
(2)解:∵a=1,b=4,c=﹣1,
∴△=16﹣4×1×(﹣1)=20>0,
则x= =﹣2
【解析】(1)根据实数的混合运算顺序和法则计算即可得;(2)公式法求解可得.
【考点精析】本题主要考查了零指数幂法则和整数指数幂的运算性质的相关知识点,需要掌握零次幂和负整数指数幂的意义: a0=1(a≠0);a-p=1/ap(a≠0,p为正整数);aman=am+n(m、n是正整数);(am)n=amn(m、n是正整数);(ab)n=anbn(n是正整数);am/an=am-n(a不等于0,m、n为正整数);(a/b)n=an/bn(n为正整数)才能正确解答此题.
练习册系列答案
相关题目
【题目】抛物线y=﹣x2+bx+c上部分点的横坐标x,纵坐标y的对应值如表:
x | … | ﹣2 | ﹣1 | 0 | 1 | 2 | … |
y | … | 0 | 4 | 6 | 6 | 4 | … |
从上表可知,有下列说法:
①抛物线与y轴的交点为(0,6);
②抛物线的对称轴是x=1;
③抛物线与x轴有两个交点,它们之间的距离是 ;
④在对称轴左侧y随x增大而增大.
其中正确的说法是( )
A.①②③
B.②③④
C.②③
D.①④