题目内容
【题目】如图,等腰三角形的底边长为,面积是, 腰的垂直平分线分别交边于点.若点为边的中点,点为线段EF上一动点,则周长的最小值为( )
A.B.C.D.
【答案】C
【解析】
连接AD,由于△ABC是等腰三角形,点D是BC边的中点,故AD⊥BC,再根据三角形的面积公式求出AD的长,再根据EF是线段AB的垂直平分线可知,点B关于直线EF的对称点为点A,故AD的长为BM+MD的最小值,由此即可得出结论.
解:连接AD,
∵△ABC是等腰三角形,点D是BC边的中点,
∴AD⊥BC,
∴S△ABC=BCAD=×4×AD=16,解得AD=8,
∵EF是线段AC的垂直平分线,
∴点C关于直线EF的对称点为点A,
∴AD的长为CM+MD的最小值,
∴△CDM的周长最短=(CM+MD)+CD
故选:C.
练习册系列答案
相关题目
【题目】我县万德隆商场有A、B两种商品的进价和售价如表:
商品 价格 | A | B |
进价(元/件) | m | m+20 |
售价(元/件) | 160 | 240 |
已知:用2400元购进A种商品的数量与用3000元购进B种商品的数量相同.
(1)求m的值;
(2)该商场计划同时购进的A、B两种商品共200件,其中购进A种商品x件,实际进货时,生产厂家对A种商品的出厂价下调a(50<a<70)元出售,若商场保持同种商品的售价不变,商场售完这200件商品的总利润为y元.
①求y关于x的函数关系式;
②若限定A种商品最多购进120件最少购进100件,请你根据以上信息,设计出使该商场获得最大利润的进货方案.