题目内容

【题目】阅读下面的文字后,解答问题:

有这样一道题目:“如图,ED是△ABCBC边上的两点,ADAE   .求证△ABE≌△ACD.请根据你的理解,在题目中的空格内,把原题补充完整(添加一个适当的条件),并写出证明过程.

【答案】BECDBDCE(可得出BECD)或ABAC(可得出∠B=∠C)或∠B=∠C或∠BAE=∠CAD或∠BAD=∠CAE(可得出∠BAE=∠CAD)(任选其一即可),证明见解析.

【解析】

先找出证△ABE≌△ACD的已知条件,然后根据全等三角形的判定定理添加条件即可.

解:∵ADAE

∴∠ADE=∠AED

∴当BECDBDCE(可得出BECD)或ABAC(可得出∠B=∠C)或∠B=∠C或∠BAE=∠CAD或∠BAD=∠CAE(可得出∠BAE=∠CAD)时,

∴△ABE≌△ACD

故答案为:BECDBDCE(可得出BECD)或ABAC(可得出∠B=∠C)或∠B=∠C或∠BAE=∠CAD或∠BAD=∠CAE(可得出∠BAE=∠CAD)(任选其一即可).

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网