题目内容
【题目】幸福村在推进美丽乡村建设中,决定建设幸福广场,计划铺设相同大小、规格的红色和蓝色地砖,经过调查,获取信息如下表:
类别 | 购买数量低于500块 | 购买数量不低于500块 |
红色地砖 | 原价销售 | 以八折销售 |
蓝色地砖 | 原价销售 | 以九折销售 |
若购买红色地砖400块,蓝色地砖600块,需付款8600元;若购买红色地砖1000块,蓝色地砖350块,需付款9900元.
(1)红色地砖和蓝色地砖的单价各多少元?
(2)经过测算,需要购置地砖1200块,其中蓝色地砖的数量不少于红色地砖的一半,并且不超过600块,如何购买付款最少?最少是多少元?请说明理由.
【答案】(1)红色地砖每块8元,蓝色地砖每块10元;(2)购买蓝色地砖700块,红色地砖500块,费用最少,最少费用为8980元.
【解析】
(1)根据题意结合表格中数据,购买红色地砖4000块,蓝色地砖6000块,需付款86000元;购买红色地砖10000块,蓝色地砖3500块,需付款99000元,分别得出方程得出答案;
(2)利用已知得出x的取值范围,再利用一次函数增减性得出答案.
(1)设红色地砖每块x元,蓝色地砖每块y元,由题意可得:
,
解得,
答:红色地砖每块8元,蓝色地砖每块10元;
(2)设购置蓝色地砖a块,则购置红色地砖(1200﹣a)块,所需的总费用为y元,
由题意可得:,
解得:600≤a≤800,
当600≤a<700时,
y=8a×0.8+0.9×10(1200﹣a)=10800﹣2.6a,
当a=700时y有最小值为:10800﹣2.6×700=8980,
当700<x≤800时,y=8a×0.8+10(1200﹣a)=﹣3.6a+12000,
当a=800时,y有最小值为:﹣3.6×800+12000=9120,
∵9120<9180,
∴购买蓝色地砖700块,红色地砖500块,费用最少,最少费用为8980元.
【题目】数学兴趣小组为了研究中小学男生身高y(cm)和年龄x(岁)的关系,从某市官网上得到了该市2017年统计的中小学男生各年龄组的平均身高,见下表:如图已经在直角坐标系中描出了表中数据对应的点,并发现前5个点大致位于直线AB上,后7个点大致位于直线CD上.
年龄组x | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 |
男生平均身高y | 115.2 | 118.3 | 122.2 | 126.5 | 129.6 | 135.6 | 140.4 | 146.1 | 154.8 | 162.9 | 168.2 |
(1)该市男学生的平均身高从 岁开始增加特别迅速.
(2)求直线AB所对应的函数表达式.
(3)直接写出直线CD所对应的函数表达式,假设17岁后该市男生身高增长速度大致符合直线CD所对应的函数关系,请你预测该市18岁男生年龄组的平均身高大约是多少?