题目内容
【题目】一个正方体物体沿斜坡向下滑动,其截面如图所示.正方形DEFH的边长为2米,坡角∠A=30°,∠B=90°,BC=6米.当正方形DEFH运动到什么位置,即当AE=米时,有DC2=AE2+BC2.
【答案】:解:假设AE=x,可得EC=12﹣x,
∵坡角∠A=30°,∠B=90°,BC=6米,
∴AC=12米,
∵正方形DEFH的边长为2米,即DE=2米,
∴DC2=DE2+EC2=4+(12﹣x)2,
AE2+BC2=x2+36,
∵DC2=AE2+BC2,
∴4+(12﹣x)2=x2+36,
解得:x=米.
故答案为:.
【解析】:根据已知得出假设AE=x,可得EC=12﹣x,利用勾股定理得出DC2=DE2+EC2=4+(12﹣x)2,AE2+BC2=x2+36,即可求出x的值.
练习册系列答案
相关题目