题目内容

我们知道三角形三条中线的交点叫做三角形的重心.经过证明我们可得三角形重心具备下面的性质:重心到顶点的距离与重心到该顶点对边中点的距离之比为2﹕1.请你用此性质解决下面的问题.
已知:如图,点O为等腰直角三角形ABC的重心,∠CAB=90°,直线m过点O,过A、B、C三点分别作直线m的垂线,垂足分别为点D、E、F.
(1)当直线m与BC平行时(如图1),请你猜想线段BE、CF和AD三者之间的数量关系并证明;
(2)当直线m绕点O旋转到与BC不平行时,分别探究在图2、图3这两种情况下,上述结论是否还成立?若成立,请给予证明;若不成立,线段AD、BE、CF三者之间又有怎样的数量关系?请写出你的结论,不需证明.
精英家教网
分析:(1)延长AO交BC于M点,由O为等腰直角三角形ABC的重心可得AO=2MO;再通过证明BCFE为矩形,可得BE=MO=CF,即可得AD=EB+CF;
(2)连接AO并延长交BC于点G,过G做GH⊥EF于H,由重心可得AO=2MO;再通过证明△AOD∽△GOH得AD=2HG;然后证得H为EF的中点,据中位线定理HG=
1
2
(EB+CF),即可得AD=EB+CF;
(3)图3不成立,CF-BE=AD.
解答:(1)猜想:BE+CF=AD(1分)
证明:如图,延长AO交BC于M点,精英家教网
∵点O为等腰直角三角形ABC的重心
∴AO=2OM且AM⊥BC
又∵EF∥BC∴AM⊥EF
∵BE⊥EF,CF⊥EF
∴EB∥OM∥CF
∴EB=OM=CF
∴EB+CF=2OM=AD.(3分)

(2)图2结论:BE+CF=AD
证明:连接AO并延长交BC于点G,精英家教网
过G做GH⊥EF于H,
由重心性质可得AO=2OG,
∵∠ADO=∠OHG=90°,∠AOD=∠HOG,
∴△AOD∽△GOH,
∴AD=2HG,(5分)
∵O为重心,
∴G为BC中点,
∵GH⊥EF,BE⊥EF,CF⊥EF,
∴EB∥HG∥CF,
∴H为EF中点,
∴HG=
1
2
(EB+CF),精英家教网
∴EB+CF=AD(7分)

(3)连接AO并延长交BC于点G,AO=2OG,
过G做GH⊥EF于H,再连接BH并延长交CF于R,
得△BEH≌△RFH(AAS),
所以CR=CF-BE=2HG=AD.
点评:本题主要考查三角形相似的判定及性质,涉及到中位线定理、重心的性质、矩形的性质等知识点,正确作出辅助线是解题的关键.
练习册系列答案
相关题目
(2013•鼓楼区一模)问题提出:
规定:四条边对应相等,四个角对应相等的两个四边形全等.
我们借助学习“三角形全等的判定”获得的经验与方法对“全等四边形的判定”进行探究.
初步思考:
在两个四边形中,我们把“一条边对应相等”或“一个角对应相等”称为一个条件.满足4个条件的两个四边形不一定全等,如边长相等的正方形与菱形就不一定全等.类似地,我们容易知道两个四边形全等至少需要5个条件.
深入探究:
小莉所在学习小组进行了研究,她们认为5个条件可分为以下四种类型:
Ⅰ一条边和四个角对应相等;Ⅱ二条边和三个角对应相等;
Ⅲ三条边和二个角对应相等;Ⅳ四条边和一个角对应相等.
(1)小明认为“Ⅰ一条边和四个角对应相等”的两个四边形不一定全等,请你举例说明.
(2)小红认为“Ⅳ四条边和一个角对应相等”的两个四边形全等,请你结合下图进行证明.
已知:如图,
四边形ABCD和四边形A1B1C1D1中,AB=A1B1,BC=B1C1,CD=C1D1,DA=D1A1,∠B=∠B1
四边形ABCD和四边形A1B1C1D1中,AB=A1B1,BC=B1C1,CD=C1D1,DA=D1A1,∠B=∠B1

求证:
四边形ABCD≌四边形A1B1C1D1
四边形ABCD≌四边形A1B1C1D1

证明:

(3)小刚认为还可以对“Ⅱ二条边和三个角对应相等”进一步分类,他以四边形ABCD和四边形A1B1C1D1为例,分为以下几类:
①AB=A1B1,AD=A1D1,∠A=∠A1,∠B=∠B1,∠C=∠C1
②AB=A1B1,AD=A1D1,∠A=∠A1,∠B=∠B1,∠D=∠D1
③AB=A1B1,AD=A1D1,∠B=∠B1,∠C=∠C1,∠D=∠D1
④AB=A1B1,CD=C1D1,∠A=∠A1,∠B=∠B1,∠C=∠C1
其中能判定四边形ABCD和四边形A1B1C1D1全等的是
①②③
①②③
(填序号),概括可得“全等四边形的判定方法”,这个判定方法是
有一组邻边和三个角对应相等的两个四边形全等
有一组邻边和三个角对应相等的两个四边形全等

(4)小亮经过思考认为也可以对“Ⅲ三条边和二个角对应相等”进一步分类,请你仿照小刚的方法先进行分类,再概括得出一个全等四边形的判定方法.

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网