题目内容

(2013年四川绵阳14分)我们知道,三角形的三条中线一定会交于一点,这一点就叫做三角形的重心.重心有很多美妙的性质,如关于线段比.面积比就有一些“漂亮”结论,利用这些性质可以解决三角形中的若干问题.请你利用重心的概念完成如下问题:

(1)若O是△ABC的重心(如图1),连结AO并延长交BC于D,证明:

(2)若AD是△ABC的一条中线(如图2),O是AD上一点,且满足,试判断O是△ABC的重心吗?如果是,请证明;如果不是,请说明理由;

(3)若O是△ABC的重心,过O的一条直线分别与AB、AC相交于G、H(均不与△ABC的顶点重合)(如图3),S四边形BCHG,SAGH分别表示四边形BCHG和△AGH的面积,试探究的最大值.

 

【答案】

解:(1)证明:如答图1所示,连接CO并延长,交AB于点E,

∵点O是△ABC的重心,∴CE是中线,点E是AB的中点。

∴DE是中位线。∴DE∥AC,且DE=AC。

∵DE∥AC,∴△AOC∽△DOE。

∵AD=AO+OD,

(2)答:点O是△ABC的重心。证明如下:

如答图2,作△ABC的中线CE,与AD交于点Q,

则点Q为△ABC的重心。

由(1)可知,  ,

∴点Q与点O重合(是同一个点)。

∴点O是△ABC的重心。

(3)如答图3所示,连接DG.

设SGOD=S,由(1)知,即OA=2OD,

∴SAOG=2S,SAGD=SGOD+SAGO=3S。

为简便起见,不妨设AG=1,BG=x,则SBGD=3xS.

∴SABD=SAGD+SBGD=3S+3xS=(3x+3)S。

∴SABC=2SABD=(6x+6)S。

设OH=k•OG,由SAGO=2S,得SAOH=2kS,

∴SAGH=SAGO+SAOH=(2k+2)S。

∴S四边形BCHG=SABC﹣SAGH=(6x+6)S﹣(2k+2)S=(6x﹣2k+4)S。

  ①。

如答图3,过点O作OF∥BC交AC于点F,过点G作GE∥BC交AC于点E,则OF∥GE。

∵OF∥BC,∴。∴OF=CD=BC。

∵GE∥BC,∴。∴

,∴

∵OF∥GE,∴。∴,即

,代入①式得:

∴当x=时,有最大值,最大值为

【解析】(1)如答图1,作出中位线DE,证明△AOC∽△DOE,可以证明结论。

(2)如答图2,作△ABC的中线CE,与AD交于点Q,则点Q为△ABC的重心.由(1)可知,,而已知,故点O与点Q重合,即点O为△ABC的重心。

(3)如答图3,利用图形的面积关系,以及相似线段间的比例关系,求出的表达式,这是一个二次函数,利用二次函数的性质求出其最大值。

考点:相似形综合题,三角形的重心,三角形中位线的性质,由实际问题列函数关系式,二次函数最值。

 

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网