题目内容
【题目】菱形ABCD中,点P为CD上一点,连接BP.
(1)如图1,若BP⊥CD,菱形ABCD边长为10,PD=4,连接AP,求AP的长.
(2)如图2,连接对角线AC、BD相交于点O,点N为BP的中点,过P作PM⊥AC于M,连接ON、MN.试判断△MON的形状,并说明理由.
【答案】(1)2;(2)△OMN是等腰三角形,理由见解析
【解析】
(1)在Rt△BCP中利用勾股定理求出PB,在Rt△ABP中利用勾股定理求出PA即可.
(2)如图2中,延长PM交BC于E.先证明PD=BE,再利用三角形中位线定理证明MN=BE,ON=PD即可.
(1)如图1中,∵四边形ABCD是菱形,
∴AB=BC=CD=AD=10,AB∥CD
∵PD=4,
∴PC=6,
∵PB⊥CD,
∴PB⊥AB,
∴∠CPB=∠ABP=90°,
在Rt△PCB中,∵∠CPB=90°,PC=6,BC=10,
∴PB==8,
在Rt△ABP中,∵∠ABP=90°,AB=10,PB=8,
∴PA===2.
(2)△OMN是等腰三角形.
理由:如图2中,延长PM交BC于E.
∵四边形ABCD是菱形,
∴AC⊥BD,CB=CD,
∵PE⊥AC,
∴PE∥BD,
∴=,
∴CP=CE,
∴PD=BE,
∵CP=CE,CM⊥PE,
∴PM=ME,
∵PN=NB,
∴MN=BE,
∵BO=OD,BN=NP,
∴ON=PD,
∴ON=MN,
∴△OMN是等腰三角形.
练习册系列答案
相关题目