题目内容
【题目】若代数式(4x2-mx-3y+4)-(8nx2-x+2y-3)的值与字母x的取值无关,求代数式(-m2+2mn-n2)-2(mn-3m2)+3(2n2-mn)的值.
【答案】.
【解析】试题分析:已知代数式去括号合并后,根据结果与x的取值无关,求出m与n的值,原式去括号合并后代入数值进行计算即可求出代数式的值.
试题解析:(4x2-mx-3y+4)-(8nx2-x+2y-3)
=4x2-mx-3y+4-8nx2+x-2y+3
=(4-8n)x2+(1-m)x-5y+7,
∵上式的值与字母x的取值无关,
∴4-8n=0,1-m=0,即m=1,n= ,
∴(-m2+2mn-n2)-2(mn-3m2)+3(2n2-mn)
=-m2+2mn-n2-2mn+6m2+6n2-3mn=5m2+5n2-3mn=5+= .
练习册系列答案
相关题目