题目内容
【题目】如图,中,,DE垂直平分AB,交线段BC于点E(点E与点C不重合),点F为AC上一点,点G为AB上一点(点G与点A不重合),且.
(1)如图1,当时,线段AG和CF的数量关系是 .
(2)如图2,当时,猜想线段AG和CF的数量关系,并加以证明.
(3)若,,,请直接写出CF的长.
【答案】(1);(2),理由见解析;(3)2.5或5
【解析】
(1)如图1,连接AE,根据线段垂直平分线的性质得到,根据等腰直角三角形的性质得到,,,根据全等三角形的性质即可得到结论;
(2)如图2,连接AE,根据等腰三角形的性质和三角形的内角和得到,根据线段垂直平分线的性质得到,求得,根据相似三角形的性质得到,解直角三角形即可得到;
(3)①当G在DA上时,如图3,连接AE,根据线段垂直平分线的性质得到,,由三角函数的定义得到,根据相似三角形的性质得到,过A作于点H由三角函数的定义即可得到结论.②当点G在BD上,如图4,方法同(1).
解:(1)相等,理由:如图1,连接AE,
∵DE垂直平分AB,
,
,
,
,
,,
,
,
,
,
,
,
;
故答案为:;
(2),
理由:如图2,连接AE,
,
,
,
∵DE垂直平分AB,
,
,
,,
,
,
,
,
,
,
在中,,
,
,
;
(3)①当G在DA上时,如图3,连接AE,
∵DE垂直平分AB,
,,
,
,
,
,
,
,
,
,
,
,
,
,
,
过A作于点H,
,
,
,
,
,
,
,
,
;
②当点G在BD上,如图4,同(1)可得,,
,
,
,
,
综上所述,CF的长为2.5或5.
练习册系列答案
相关题目