题目内容

【题目】在平面直角坐标系中,O 为原点,点 A(4,0),点 B(0,3),把△ABO 绕点 B 逆时针旋转,得△A′BO′,点 A、O 旋转后的对应点为 A′、O′,记旋转角为ɑ.

(1)如图 1,若ɑ=90°,求 AA′的长;

(2)如图 2,若ɑ=120°,求点 O′的坐标.

【答案】(1)5;(2)O′的坐标为().

【解析】

(1)由题意可知OA=4,OB=3,由勾股定理求得AB=5.再由旋转的性质可得△ABA′为等腰直角三角形,即可得AA′=BA=5; (2)作O′Hy轴于点H,根据旋转的性质可得BO=BO′=3,OBO′=120°,即可得∠HBO′=60°.RtBHO′中,∠BO′H′=30°,可得BH=BO′=.再由勾股定理求得O′H=.所以OH=OB+BH=,即可得点O′的坐标为().

(1)∵点A(4,0),点B(0,3),

OA=4,OB=3.

AB==5.

∵△ABO绕点B逆时针旋转90°,得A′BO′,

BA=BA′,ABA′=90°.

∴△ABA′为等腰直角三角形,

AA′=BA=5.

(2)作O′Hy轴于点H.

∵△ABO绕点B逆时针旋转120°,得A′BO′,

BO=BO′=3,OBO′=120°.

∴∠HBO′=60°.

RtBHO′中,∵∠BO′H=90°-HBO′=30°,

BH=BO′=.

O′H=.

OH=OB+BH=3+=.

∴点O′的坐标为().

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网