题目内容
【题目】如图,在平面直角坐标系中,过点A与x轴平行的直线交抛物线y=于点B、C,线段BC的长度为6,抛物线y=﹣2x2+b与y轴交于点A,则b=( )
A. 1 B. 4.5 C. 3 D. 6
【答案】C
【解析】
根据题意知点A(0,b),设点C(x1,b)、点B(x2,b),则x1、x2是方程=b的两根,根据BC长度可得x1-x2=6即(x1+x2)2-4x1x2=36,由根与系数关系将x1+x2、x1x2代入求解可得.
根据题意点A(0,b),设点C(x1,b)、点B(x2,b),
抛物线y=中,当y=b时,有=b,
即:x2+2x+1﹣3b=0,
∴x1+x2=﹣2,x1x2=1﹣3b,
∵BC=6,即x1﹣x2=6,
∴(x1﹣x2)2=36,即(x1+x2)2﹣4x1x2=36,
则:4﹣4(1﹣3b)=36,
解得:b=3,
故选C.
【题目】第二十四届冬季奥林匹克运动会将与2022年2月20日在北京举行,北京将成为历史上第一座举办过夏奥会又举办过冬奥会的城市,东宝区举办了一次冬奥会知识网上答题竞赛,甲、乙两校各有400名学生参加活动,为了解这两所学校的成绩情况,进行了抽样调查,过程如下,请补充完整.
(收集数据)
从甲、乙两校各随机抽取20名学生,在这次竞赛中它们的成绩如下:
甲 | 30 | 60 | 60 | 70 | 60 | 80 | 30 | 90 | 100 | 60 |
60 | 100 | 80 | 60 | 70 | 60 | 60 | 90 | 60 | 60 | |
乙 | 80 | 90 | 40 | 60 | 80 | 80 | 90 | 40 | 80 | 50 |
80 | 70 | 70 | 70 | 70 | 60 | 80 | 50 | 80 | 80 |
(整理、描述数据)按如下分数段整理、描述这两组样本数据:
(说明:优秀成绩为80<x≤100,良好成绩为50<x≤80,合格成绩为30≤x≤50.)
学校 | 平均分 | 中位数 | 众数 |
甲 | 67 | 60 | 60 |
乙 | 70 | 75 | a |
30≤x≤50 | 50<x≤80 | 80<x≤100 | |
甲 | 2 | 14 | 4 |
乙 | 4 | 14 | 2 |
(分析数据)两组样本数据的平均分、中位数、众数如右表所示:其中a= .
(得出结论)
(1)小伟同学说:“这次竞赛我得了70分,在我们学校排名属中游略偏上!”由表中数据可知小明是 校的学生;(填“甲”或“乙”)
(2)老师从乙校随机抽取一名学生的竞赛成绩,试估计这名学生的竞赛成绩为优秀的概率为 ;
(3)根据以上数据推断一所你认为竞赛成绩较好的学校,并说明理由.(至少从两个不同的角度说明推断的合理性)