题目内容
【题目】如图1,矩形ABCD中,AB=8,AD=6;点E是对角线BD上一动点,连接CE,作EF⊥CE交AB边于点F,以CE和EF为邻边作矩形CEFG,作其对角线相交于点H.
(1)①如图2,当点F与点B重合时,CE= ,CG= ;
②如图3,当点E是BD中点时,CE= ,CG= ;
(2)在图1,连接BG,当矩形CEFG随着点E的运动而变化时,猜想△EBG的形状?并加以证明;
(3)在图1,的值是否会发生改变?若不变,求出它的值;若改变,说明理由;
(4)在图1,设DE的长为x,矩形CEFG的面积为S,试求S关于x的函数关系式,并直接写出x的取值范围.
【答案】(1), ,5, ;(2)△EBG是直角三角形,理由详见解析;(3) ;(4)S=x2﹣x+48(0≤x≤).
【解析】
(1)①利用面积法求出CE,再利用勾股定理求出EF即可;②利用直角三角形斜边中线定理求出CE,再利用相似三角形的性质求出EF即可;
(2)根据直角三角形的判定方法:如果一个三角形一边上的中线等于这条边的一半,则这个三角形是直角三角形即可判断;
(3)只要证明△DCE∽△BCG,即可解决问题;
(4)利用相似多边形的性质构建函数关系式即可;
(1)①如图2中,
在Rt△BAD中,BD==10,
∵S△BCD=CDBC=BDCE,
∴CE=.CG=BE=.
②如图3中,过点E作MN⊥AM交AB于N,交CD于M.
∵DE=BE,
∴CE=BD=5,
∵△CME∽△ENF,
∴,
∴CG=EF=,
(2)结论:△EBG是直角三角形.
理由:如图1中,连接BH.
在Rt△BCF中,∵FH=CH,
∴BH=FH=CH,
∵四边形EFGC是矩形,
∴EH=HG=HF=HC,
∴BH=EH=HG,
∴△EBG是直角三角形.
(3)F如图1中,∵HE=HC=HG=HB=HF,
∴C、E、F、B、G五点共圆,
∵EF=CG,
∴∠CBG=∠EBF,
∵CD∥AB,
∴∠EBF=∠CDE,
∴∠CBG=∠CDE,
∵∠DCB=∠ECG=90°,
∴∠DCE=∠BCG,
∴△DCE∽△BCG,
∴.
(4)由(3)可知:
,
∴矩形CEFG∽矩形ABCD,
∴,
∵CE2=(-x)2+)2,S矩形ABCD=48,
∴S矩形CEFG= [(-x)2+()2].
∴矩形CEFG的面积S=x2-x+48(0≤x≤).