题目内容
【题目】已知:如图四边形ABCD中,∠ABC的平分线BE交CD于E,∠BCD的平分线CF交AB于F,BE、CF相交于O,∠A=124°,∠D=100°.求∠BOF的度数.
【答案】68°
【解析】试题分析:先根据四边形内角和等于360°和已知条件求出∠ABC+∠BCD的度数,然后根据角平分线的性质以及三角形的内角和外角的关系即可求得∠BOF的度数.
试题解析:解:∵四边形ABCD中,∠A=124°,∠D=100°,∴∠ABC+∠BCD=360°﹣(∠A+∠D)=136°,∵∠ABC的平分线BE交CD于E,∠BCD的平分线CE交AB于F,∴∠OBC+∠OCB=(∠ABC+∠BCD)=68°,则∠BOF=∠OBC+∠OCB=68°.
练习册系列答案
相关题目