题目内容
【题目】(1)方法形成
如图①,在四边形ABCD中,AB∥DC,点H是BC的中点,连结AH并延长交DC的延长线于M,则有CM=AB.请说明理由;
(2)方法迁移
如图②,在四边形ABCD中,点H是BC的中点,E是AD上的点,且△ABE和△DEC都是等腰直角三角形,∠BAE=∠EDC=90°.请探究AH与DH之间的关系,并说明理由.
(3)拓展延伸
在(2)的条件下,将Rt△DEC绕点E旋转到图③的位置,请判断(2)中的结论是否依然成立?若成立,请说明理由;若不成立,请举例说明.
【答案】(1)见解析;(2)AH⊥DH,AH=DH,理由见解析;(3)成立,理由见解析
【解析】
(1)由AB∥CD知∠BAH=∠CMH,∠B=∠BCM,结合BH=HC证△ABH≌△MCH,从而得出答案;
(2)延长AH交DC的延长线于F,证△ABH≌△FCH得AB=CF,AH=HF,由等腰直角三角形知AB=AE=CF,CD=DE,从而得AD=DF,据此即可得出AH⊥DH,AH=DH;
(3)作CF∥AB交AH的延长线于F,设旋转角度为α,则∠AED=∠DCF=180°-α,由(1)(2)得知AH=HF,AB=AE=CF,CD=DE,据此可证△AED≌△FCD得AD=DF,∠ADE=∠FDC,∠ADF=90°,从而得出答案.
(1)∵AB∥CD,
∴∠BAH=∠CMH,∠B=∠BCM,
∵H是BC的中点,
∴BH=HC,
∴△ABH≌△MCH(AAS),
∴AB=CM.
(2)如图②,延长AH交DC的延长线于F,
∵∠BAE=∠EDC=90°,
∴∠BAE+∠EDC=180°,
∴AB∥DF,BH=HE,
由(1)得△ABH≌△FCH(AAS)
∴AB=CF,AH=HF,
由等腰Rt△ABE和等腰Rt△DEC得:AB=AE=CF,CD=DE,
∴AD=DF,
∴AH⊥DH,AH=DH.
(3)如图③过点C作CF∥AB交AH的延长线于F,
连接AD和DF.
设旋转角度为α,则∠AED=∠DCF=180°﹣α,
由(1)(2)得:AH=HF,AB=AE=CF,CD=DE,
∴△AED≌△FCD(SSS),
∴AD=DF,∠ADE=∠FDC,
∴∠ADF=90°,
∴AH⊥DH,AH=DH.
【题目】为了解某市市民“绿色出行”方式的情况,某校数学兴趣小组以问卷调查的形式,随机调查了某市部分出行市民的主要出行方式(参与问卷调查的市民都只从以下五个种类中选择一类),并将调查结果绘制成如下不完整的统计图.
种类 | A | B | C | D | E |
出行方式 | 共享单车 | 步行 | 公交车 | 的士 | 私家车 |
根据以上信息,回答下列问题:
(1)参与本次问卷调查的市民共有 人,其中选择B类的人数有 人;
(2)在扇形统计图中,求A类对应扇形圆心角α的度数,并补全条形统计图;
(3)该市约有12万人出行,若将A,B,C这三类出行方式均视为“绿色出行”方式,请估计该市“绿色出行”方式的人数.