题目内容
【题目】我们常见的汽车玻璃升降器如图①所示,图②和图③是升降器的示意图,其原理可以看作是主臂PB绕固定的点O旋转,当端点P在固定的扇形齿轮上运动时,通过叉臂式结构(点B可在MN上滑动)的玻璃支架MN带动玻璃沿导轨作上下运动而达到玻璃升降目的.点O和点P,A,B在同一直线上.当点P与点E重合时,窗户完全闭合(图②),此时∠ABC=30°;当点P与点F重合时,窗户完全打开(图③).已知的半径OP=5cm,=cm,OA=AB=AC=20cm.
(1)当窗户完全闭合时,OC=_____cm.
(2)当窗户完全打开时,PC=_____cm.
【答案】20 5
【解析】
(1)证出∠OCB=90°,△AOC是等边三角形,由等边三角形的性质得出OC=OA=20cm即可;
(2)连接PC,OE,作PG⊥MN于G,如图所示:由弧长公式求出∠EOP=90°,当窗户完全打开时,∠POC=150°,得出∠COE=150°-90°=60°,∠BOC=30°,∠ABC=60°,得出△ABC是等边三角形,BC=OA=20,求出BP=AB+OA+OP=45,, ,得出CG=BG-BC=,由勾股定理即可得出结果.
解:(1)∵OA=AB=AC=20cm,
∴∠OCB=90°,
∵∠ABC=30°,
∴∠BOC=60°,
∴△AOC是等边三角形,
∴OC=OA=20cm;
故答案为20;
(2)连接PC,OE,作PG⊥MN于G,如图③所示:
则OCB=∠PGC=90°,
∴FG∥OC,
设∠EOP=n°,
∵的长=,
解得:n=90,
∴∠EOP=90°,
由(1)得:当窗户完全闭合时,∠POC=180°﹣60°=150°,
∴∠COE=150°﹣90°=60°,
∴∠BOC=90°﹣60°=30°,
∴∠ABC=60°,
∴△ABC是等边三角形,BC=OA=20,
∵BP=AB+OA+OP=45,
∴CG=BG﹣BC=,
在Rt△PCG中,由勾股定理得:.
故答案为.
【题目】为了调查学生对垃圾分类及投放知识的了解情况,从甲、乙两校各随机抽取40名学生进行了相关知识测试,获得了他们的成绩(百分制),并对数据(成绩)进行了整理、描述和分析.下面给出了部分信息.
a.甲、乙两校40名学生成绩的频数分布统计表如下:
成绩x 学校 | |||||
甲 | 4 | 11 | 13 | 10 | 2 |
乙 | 6 | 3 | 15 | 14 | 2 |
(说明:成绩80分及以上为优秀,70~79分为良好,60~69分为合格,60分以下为不合格)
b.甲校成绩在这一组的是:
70 70 70 71 72 73 73 73 74 75 76 77 78
c.甲、乙两校成绩的平均分、中位数、众数如下:
学校 | 平均分 | 中位数 | 众数 |
甲 | 74.2 | n | 5 |
乙 | 73.5 | 76 | 84 |
根据以上信息,回答下列问题:
(1)写出表中n的值;
(2)在此次测试中,某学生的成绩是74分,在他所属学校排在前20名,由表中数据可知该学生是_____________校的学生(填“甲”或“乙”),理由是__________;
(3)假设乙校800名学生都参加此次测试,估计成绩优秀的学生人数.