题目内容
【题目】实验证明,平面镜反射光线的规律是:照射到平面镜上的光线和被反射出的光线与平面镜所夹的锐角相等.
如图,一束光线MA照射到平面镜CE上,被CE反射到平面镜CF上,又被CF反射.已知被CF反射出的光线BN与光线MA平行.若∠1=35°,则∠2= ,∠3= ;若∠1=50°,∠3= .
(2)由(1)猜想:当两平面镜CE,CF的夹角∠3为多少度时,可以使任何射到平面镜CE上的光线MA,经过平面镜CE,CF的两次反射后,入射光线MA与反射光线BN平行,请你写出推理过程.
【答案】(1)70°,90°,90°;(2)猜想:当两平面镜CE,CF的夹角∠3为90°时,可以使任何射到平面镜CE上的光线MA,经过平面镜CE,CF的两次反射后,入射光线MA与反射光线BN平行.理由见解析.
【解析】
(1)根据平行线的性质和三角形内角和,以及入射角等于反射角,可以求得∠2和∠3的度数;
(2)先写出∠3等于多少度,然后根据题意和图形结合第(1)问的提示思路,即可写出推理过程.
解:(1)∵AM∥BN,
∴∠MAB+∠2=180°,
∵∠MAB+∠1+∠BAC=180°,∠1=∠BAC,∠1=35°,
∴∠2=2∠1=70°,
∵∠2+∠ABC+∠NBF=180°,∠ABC=∠NBF,
∴∠ABC=55°,
∴∠3=180°-∠BAC-∠ABC=90°;
当∠1=50°时, 同理可得,∠2=100°,∠ABC=40°,∠BAC=∠1=50°,
则∠3=180°-∠BAC-∠ABC=90°;
故答案为:70°,90°,90°;
(2)猜想:当两平面镜CE,CF的夹角∠3为90°时,可以使任何射到平面镜CE上的光线MA,经过平面镜CE,CF的两次反射后,入射光线MA与反射光线BN平行.
理由:∵∠3=90°,
∴∠BAC+∠ABC=90°,
∵∠1=∠BAC,∠ABC=∠NBF,
∴∠BAC+∠1+∠ABC+∠NBF=180°,
∴∠MAB+∠2=180°,
∴MA∥BN.
【题目】某移动通信公司推出了如下两种移动电话计费方式,
月使用费/元 | 主叫限定时间/分钟 | 主叫超时费(元/分钟) | |
方式一 | 30 | 600 | 0.20 |
方式二 | 50 | 600 | 0.25 |
说明:月使用费固定收取,主叫不超过限定时间不再收费,超过部分加收超时费.例如,方式一每月固定交费30元,当主叫计时不超过300分钟不再额外收费,超过300分钟时,超过部分每分钟加收0.20元(不足1分钟按1分钟计算)
(1)请根据题意完成如表的填空;
月主叫时间500分钟 | 月主叫时间800分钟 | |
方式一收费/元 |
| 130 |
方式二收费/元 | 50 |
|
(2)设某月主叫时间为t(分钟),方式一、方式二两种计费方式的费用分别为y1(元),y2(元),分别写出两种计费方式中主叫时间t(分钟)与费用为y1(元),y2(元)的函数关系式;
(3)请计算说明选择哪种计费方式更省钱.