题目内容
【题目】如图,△ABC 是等边三角形,P 是 BC 上任意一点,PD⊥AB,PE⊥AC,连接 DE.记△ADE 的周长为,四边形 BDEC 的周长为,则与的大小关系是( )
A. =B. >C. <D. 无法确定
【答案】A
【解析】
等边三角形各内角为60°,故∠B=∠C=60°,即可求得BP=2BD,CP=2CE,∴BD+CE=BC,即可求得L1=L2,故选A.
解:∵等边三角形各内角为60°,∴∠B=∠C=60°,
∵∠BPD=∠CPE=30°,
∴在Rt△BDP和Rt△CEP中,
∴BP=2BD,CP=2CE,
∴BD+CE=BC,
∴AD+AE=AB+AC-BC=BC,
∴BD+CE+BC=BC,
L1=BC+DE,
L2=BC+DE,
即得L1=L2,
故选:A.
练习册系列答案
相关题目
【题目】某工地因道路建设需要开挖土石方,计划每小时挖掘土石方540m3,现决定向某大型机械租赁公司租用甲、乙两种型号的挖掘机来完成这项工作,租赁公司提供的挖掘机有关信息如表:
租金(单位:元/台时) | 挖掘土石方量(单位:m3/台时) | |
甲型机 | 100 | 60 |
乙型机 | 120 | 80 |
(1)若租用甲、乙两种型号的挖掘机共8台,恰好完成每小时的挖掘量,则甲、乙两种型的挖掘机各需多少台?
(2)如果每小时支付的租金不超过850元,又恰好完成每小时的挖掘量,那么共有几种不同的租用方案.