题目内容
【题目】如图,在平面直角坐标系中,二次函数y=x2+bx+c的图象与x轴交于A、C两点,点A在点C的右边,与y轴交于点B,点B的坐标为(0,﹣3),且OB=OC,点D为该二次函数图象的顶点.
(1)求这个二次函数的解析式及顶点D的坐标;
(2)如图,若点P为该二次函数的对称轴上的一点,连接PC、PO,使得∠CPO=90°,请求出所有符合题意的点P的坐标;
(3)在对称轴上是否存在一点P,使得∠OPC为钝角,若存在,请直接写出点P的纵坐标为yp的取值范围,若没有,请说明理由.
【答案】(1)二次函数的解析式为y=x2+2x﹣3,D(﹣1,﹣4);(2)P(﹣1,)或(﹣1,﹣);(3)当﹣<yP<且yP≠0时,∠OPC是钝角.
【解析】
(1)先求出点C坐标,最后用待定系数法即可得出结论;
(2)先利用同角的余角相等,判断出∠COP=∠CPQ,进而求出PQ,即可得出结论;
(3)借助(2)的结论和图形,即可得出结论.
(1)∵B(0,﹣3),∴OB=3.
∵OB=OC,∴OC=3,∴C(0,﹣3),∴,∴,∴二次函数的解析式为y=x2+2x﹣3=﹣(x﹣1)2﹣4,∴D(﹣1,﹣4);
(2)如图,过点P作PQ⊥x轴于点Q,设P(﹣1,p).
∵∠COP+∠OPQ=90°,∠CPQ+∠OPQ=90°,∴∠COP=∠CPQ,∴tan∠COP=tan∠CPQ.在Rt△QOP中,tan∠COP=.在Rt△CPQ中,tan∠CPQ=,∴,∴PQ2=CQ×OQ=2(此处可以用射影定理,也可以判断出△CPQ∽△POQ).
∵PQ>0,∴PQ=,∴p=或p=﹣,∴P(﹣1,)或(﹣1,﹣);
(3)存在这样的点P,理由:如图,由(2)知,yP=时,∠OPC=90°.
∵yP=0时,∠OPC是平角,∴当﹣<yP<且yP≠0时,∠OPC是钝角.
【题目】某公司实行年工资制,职工的年工资由基础工资、住房补贴和医疗费三项组成,具体规定如下:
项目 | 第一年的工资(万元) | 一年后的计算方法 |
基础工资 | 1 | 每年的增长率相同 |
住房补贴 | 0.04 | 每年增加0.04 |
医疗费 | 0.1384 | 固定不变 |
(1)设基础工资每年增长率为x,用含x的代数式表示第三年的基础工资为 万元;
(2)某人在公司工作了3年,他算了一下这3年拿到的住房补贴和医疗费正好是这3年基础工资总额的18 %,问基础工资每年的增长率是多少?