题目内容
【题目】如图,BC为⊙O的直径,点D在⊙O上,连结BD、CD,过点D的切线AE与CB的延长线交于点A,∠BCD=∠AEO,OE与CD交于点F.
(1)求证:OF∥BD;
(2)当⊙O的半径为10,sin∠ADB=时,求EF的长.
【答案】(1)证明见解析;(2)EF=21.
【解析】
(1)连接OD,如图,利用切线的性质得到OD⊥AE,利用圆周角定理得到∠BDC=90°,然后证明∠ADB=∠AEO得到BD∥OF;
(2)由(1)知,sin∠C=sin∠E=sin∠ADB=.在Rt△BCD中,利用正弦的定义计算出BD=8,再利用三角形中位线性质得到OF=BD=4,接着在Rt△EOD中利用正弦定义计算出OE=25,然后计算OE与OF的差即可.
(1)连接OD,如图,∵AE与O相切,∴OD⊥AE,∴∠ADB+∠ODB=90°.
∵BC为直径,∴∠BDC=90°,即∠ODB+∠ODC=90°,∴∠ADB=∠ODC.
∵OC=OD,∴∠ODC=∠C,而∠BCD=∠AEO,∴∠ADB=∠AEO,∴BD∥OF;
(2)由(1)知,∠ADB=∠E=∠BCD,∴sin∠C=sin∠E=sin∠ADB=.在Rt△BCD中,sin∠C==,∴BD=×20=8.
∵OF∥BD,∴OF=BD=4.在Rt△EOD中,sin∠E==,∴OE=25,∴EF=OE﹣OF=25﹣4=21.
练习册系列答案
相关题目