题目内容

如图1,在边长为a的正方形中,剪掉两个长方形(a>b),把剪下的部分拼成一个矩形(如图2),通过计算两个图形(阴影部分)的面积,可以验证一个等式,则这个等式是
a2-b2=(a+b)(a-b)
a2-b2=(a+b)(a-b)

分析:第一个图形中阴影部分的面积计算方法是边长是a的正方形的面积减去边长是b的小正方形的面积,等于a2-b2;第二个图形阴影部分是一个长是(a+b),宽是(a-b)的长方形,面积是(a+b)(a-b);这两个图形的阴影部分的面积相等.
解答:解:∵在边长为a的正方形中,剪掉两个长方形(a>b),把剪下的部分拼成一个矩形,
∴阴影部分的面积为:a2-b2=(a+b)(a-b),
因而可以验证的等式是a2-b2=(a+b)(a-b).
故答案为:a2-b2=(a+b)(a-b).
点评:本题主要考查的是平方差公式的几何表示,运用不同方法表示阴影部分面积是解题的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网