题目内容
【题目】(感知)如图①,在四边形ABCD中,点P在边AB上(点P不与点A、B重合),∠A=∠B=∠DPC=90°.易证:△DAP∽△PBC(不要求证明).
(探究)如图②,在四边形ABCD中,点P在边AB上(点P不与点A、B重合),∠A=∠B=∠DPC.
(1)求证:△DAP~△PBC.
(2)若PD=5,PC=10,BC=9,求AP的长.
(应用)如图③,在△ABC中,AC=BC=4,AB=6,点P在边AB上(点P不与点A、B重合),连结CP,作∠CPE=∠A,PE与边BC交于点E.当CE=3EB时,求AP的长.
【答案】【探究】(1)证明见解析(2)AP=4.5;【应用】AP=3+或AP=3﹣
【解析】
探究:(1)根据外角的性质得到∠DPB=∠A+∠ADP,等量代换得到∠ADP=∠CPB,根据相似三角形的判定定理即可得到结论;
(2)根据相似三角形的性质得到,代入数据即可得到结论;
应用:根据等腰三角形的性质得到∠A=∠B,根据相似三角形的性质得到ACBE=APBP,代入数据即可得到结论.
探究:(1)∵∠DPB=∠A+∠ADP,
∴∠DPC+∠CPB=∠A+∠ADP,
∵∠A=∠DPC,
∴∠ADP=∠CPB,
∵∠A=∠B,
∴△DAP∽△PBC;
(2)∵△DAP∽△PBC,
∴,
∴,
∴AP=4.5;
应用:∵AC=BC,
∴∠A=∠B,
∵∠CPE=∠A,
∴∠A=∠CPE=∠B,
由探究得△CAP∽△PBE,
∴,
∴ACBE=APBP,
∵BC=4,CE=3EB,
∴BE=1,
∵AC=4,BP=AB﹣AP=6﹣AP,
∴AP(6﹣AP)=4,
∴AP=3+或AP=3﹣.
练习册系列答案
相关题目