题目内容
【题目】如图,已知梯形ABCD中,AB∥CD,∠D=90°,BE平分∠ABC,交CD于点E,F是AB的中点,联结AE、EF,且AE⊥BE.
求证:(1)四边形BCEF是菱形;
(2).
【答案】(1)证明见解析;(2)证明见解析.
【解析】分析:(1)根据角平分线的性质可得出∠ABE=∠CBE,由直角三角形斜边上中线等于斜边的一半可得出EF=BF=AB,进而可得出∠FEB=∠FBE=∠CBE,由“内错角相等,两直线平行”可得出EF∥BC,结合AB∥CD可得出四边形BCEF是平行四边形,再由邻边EF=BF即可证出四边形BCEF是菱形;
(2)根据菱形的性质可得出BC=BF,结合BF=AB可得出AB=2BC,由AB∥CD可得出∠DEA=∠EAB,结合∠D=∠AEB=90°可证出△EDA∽△AEB,根据相似三角形的性质可得出BEAE=ADBA,代入BA=2BC即可证出结论.
详解:(1)∵BE平分∠ABC,∴∠ABE=∠CBE.
∵AE⊥BE,∴∠AEB=90°.
∵F是AB的中点,∴EF=BF=AB,∴∠FEB=∠FBE=∠CBE,∴EF∥BC.
∵AB∥CD,∴四边形BCEF是平行四边形.
∵EF=BF,∴四边形BCEF是菱形.
(2)∵四边形BCEF是菱形,∴BC=BF.
∵BF=AB,∴AB=2BC.
∵AB∥CD,∴∠DEA=∠EAB.
∵∠D=∠AEB=90°,∴△EDA∽△AEB,∴=,∴BEAE=ADBA,∴BEAE=2ADBC.
【题目】抛物线y=﹣x2+bx+c上部分点的横坐标x,纵坐标y的对应值如下表所示:
x | … | ﹣2 | ﹣1 | 0 | 1 | 2 | … |
y | … | 0 | 4 | 6 | 6 | 4 | … |
从上表可知,下列说法中,错误的是( )
A. 抛物线于x轴的一个交点坐标为(﹣2,0)
B. 抛物线与y轴的交点坐标为(0,6)
C. 抛物线的对称轴是直线x=0
D. 抛物线在对称轴左侧部分是上升的
【题目】按下图方式摆放餐桌和椅子,
…
(1)1张长方形餐桌可坐4人,2张长方形餐桌拼在一起可坐______人.
(2)按照上图的方式继续排列餐桌,完成下表.
桌子张数 | 3 | 4 | 5 | n |
可坐人数 | ______ | ______ | ______ | ______ |
(3)一家餐厅有40张这样的长方形餐桌,某用餐单位要求餐厅按照上图方式,每8张长方形餐桌拼成1张大桌子,则该餐厅此时能容纳多少人用餐?