题目内容

【题目】如图,已知正方形OABC的边长为2,顶点A,C分别在x轴,y轴的正半轴上,点E是BC的中点,F是AB延长线上一点且FB=1.

(1)求经过点O,A,E三点的抛物线解析式;

(2)点P在抛物线上运动,当点P运动到什么位置时△OAP的面积为2,请求出点P的坐标;

(3)在抛物线上是否存在一点Q,使△AFQ是等腰直角三角形?若存在直接写出点Q的坐标;若不存在,请说明理由.

【答案】(1)y=-2x24x2(12)(1,-2)(1,-2)3)抛物线上存在点Q( )使AFQ是等腰直角三角形

【解析】试题分析:(1)根据点A、点E的坐标,设出二次函数的解析式,待定系数即可;

(2)判断出面积为2时的点的纵坐标,代入函数可求P点的坐标;

(3)根据题意,分三种情况讨论解答.

试题解析:(1)点A的坐标是(2,0),点E的坐标是(1,2).

设抛物线的解析式是y=ax2+bx+c,根据题意,得

解得

∴抛物线的解析式是y=-2x2+4x.

(2)当△OAP的面积是2时,点P的纵坐标是2或-2.

当-2x2+4x=2时,解得x=1,

∴点P的坐标是(1,2);

当-2x2+4x=-2时,解得x=1±

此时点P的坐标是(1+,-2)或(1-,-2).

综上,点P的坐标为(1,2),(1+,-2)或(1-,-2).

(3)∵AF=AB+BF=2+1=3,OA=2.

则点A是直角顶点时,Q不可能在抛物线上;

当点F是直角顶点时,Q不可能在抛物线上;

当点Q是直角顶点时,Q到AF的距离是AF=,若点Q存在,则Q的坐标是( ).将Q( )代入抛物线解析式成立.

∴抛物线上存在点Q( )使△AFQ是等腰直角三角形.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网