题目内容
【题目】数学活动
(1)情境观察
将矩形纸片ABCD沿对角线AC剪开,得到△ABC和△A′C′D,如图23-1所示.将△A′C′D的顶点A′与点A重合,并绕点A(A′)按逆时针方向旋转,使点D、A(A′)、B在同一条直线上,如图23-2所示.
观察图23-2可知:与BC相等的线段是 ,∠CAC′= 度.
(2)问题探究
如图23-3,△ABC中,AG⊥BC于点G,以A为直角顶点,分别以AB、AC为直角边,向△ABC外作等腰Rt△ABE和等腰Rt△ACF,过点E、F作射线GA的垂线,垂足分别为P、Q. 试探究EP与FQ之间的数量关系,并证明你的结论.
(3)拓展延伸
如图23-4,△ABC中,AG⊥BC于点G,分别以AB、AC为一边向△ABC外作矩形ABME和矩形ACNF,射线GA交EF于点H. 若AB=k·AE,AC=k·AF,试探究HE与HF之间的数量关系,并说明理由.
【答案】(1)DA,90;(2)FQ=EP;证明如下;(3)HE=HF,理由如下.
【解析】解:(1)如图2,由旋转的性质可知,△ABC≌△A′C′D,
∴BC=A′D,∠ACB=∠C′AD,又∠ACB+∠CAB=90°,
∴∠C′AD+∠CAB=90°,即∠CAC′=90°,
故答案为:A′D;=90°;
(2)EP=FQ,
证明:∵△ABE是等腰直角三角形,
∴∠EAB=90°,即∠EAP+∠BAG=90°,又∠ABG+∠BAG=90°,
∴∠EAP=∠ABG,
在△APE和△BGA中,
,
∴△APE≌△BGA,
∴EP=AG,
同理,FQ=AG,
∴EP=FQ;
(3)HE=HF,
证明:作EP⊥GA交GA的延长线于P,作FQ⊥GA交GA的延长线于Q,
∵四边形ABME是矩形,
∴∠EAB=90°,即∠EAP+∠BAG=90°,又∠ABG+∠BAG=90°,
∴∠EAP=∠ABG,又∠APE=∠BGA=90°,
∴△APE∽△BGA,
∴=,即AG=kEP,
同理△AQF∽△CGA,
∴=k,即AG=kFQ,
∴EP=FQ,
∵EP⊥GA,FQ⊥GA,
∴EP∥FQ,又EP=FQ,
∴HE=HF.