题目内容
【题目】如图,矩形ABCD的对角线AC、BD交于点O,CE∥BD,DE∥AC.
(1)证明:四边形OCED为菱形;
(2)若AC=4,求四边形CODE的周长.
【答案】
(1)解:证明:∵CE∥BD,DE∥AC,
∴四边形CODE为平行四边形
又∵四边形 ABCD 是矩形
∴OD=OC
∴四边形CODE为菱形
(2)解:∵四边形 ABCD 是矩形
∴OC=OD= AC
又∵AC=4
∴OC=2
由(1)知,四边形CODE为菱形
∴四边形CODE的周长为=4OC=2×4=8.
【解析】(1)首先由CE∥BD,DE∥AC,可证得四边形CODE是平行四边形,又由四边形ABCD是矩形,根据矩形的性质,易得OC=OD,即可判定四边形CODE是菱形,(2)求出OC=OD=2,由菱形的性质即可得出答案.
【考点精析】认真审题,首先需要了解矩形的性质(矩形的四个角都是直角,矩形的对角线相等).
练习册系列答案
相关题目
【题目】学校射击队计划从甲、乙两人中选拔一人参加运动会射击比赛,在选拔过程中,每人射击10次,计算他们的平均成绩及方差如下表:
选手 | 甲 | 乙 |
平均数(环) | 9.5 | 9.5 |
方差 | 0.035 | 0.015 |
请你根据上表中的数据选一人参加比赛,最适合的人选是 .