题目内容
【题目】在ABCD中,点E、F分别在AB、CD上,且AE=CF.
(1)求证:△ADE≌△CBF;
(2)若DF=BF,求证:四边形DEBF为菱形.
【答案】(1)证明过程见解析;(2)证明过程见解析
【解析】
试题分析:(1)、首先根据平行四边形的性质可得AD=BC,∠A=∠C,再加上条件AE=CF可利用SAS证明三角形全等;(2)、首先根据AE=CF得出DF=BE,再加上条件AB∥CD可得四边形DEBF是平行四边形,再根据DF=FB,可根据邻边相等的平行四边形为菱形证出结论.
试题解析:(1)、∵四边形ABCD是平行四边形, ∴AD=BC,∠A=∠C,
∵在△ADE和△CBF中,, ∴△ADE≌△CBF(SAS);
(2)、∵四边形ABCD是平行四边形, ∴AB∥CD,AB=CD, ∵AE=CF, ∴DF=EB,
∴四边形DEBF是平行四边形, 又∵DF=FB, ∴四边形DEBF为菱形.
练习册系列答案
相关题目
【题目】下表是一组二次函数y=x2+3x﹣5的自变量x与函数值y的对应值:
x | 1 | 1.1 | 1.2 | 1.3 | 1.4 |
y | ﹣1 | ﹣0.49 | 0.04 | 0.59 | 1.16 |
那么方程x2+3x﹣5=0的一个近似根是( )
A.1
B.1.1
C.1.2
D.1.3