题目内容
【题目】如图,正方形ABCD中,内部有6个全等的正方形,小正方形的顶点E、F、G、H分别在边AD、AB、BC、CD上,则tan∠DEH=( )
A. B. C. D.
【答案】A
【解析】
设大正方形的边长为25,如图,过点G作GP⊥AD,垂足为P,可以得到△BGF∽△PGE,再根据相似三角形对应边成比例的性质列式求解即可得到DE和BG,根据勾股定理可求EG的长,进而求出每个小正方形的边长,进而求出tan∠DEH的值.
如图所示:
∵正方形ABCD边长为25,
∴∠A=∠B=90°,AB=25,
过点G作GP⊥AD,垂足为P,则∠4=∠5=90°,
∴四边形APGB是矩形,
∴∠2+∠3=90°,PG=AB=25,
∵六个大小完全一样的小正方形如图放置在大正方形中,
∴∠1+∠2=90°,
∴∠1=∠FGB,
∴△BGF∽△PGE,
∴,
∴,
∴GB=5,
∴AP=5,
同理DE=5,
∴EP=15,
在Rt△EPG中,EG=,
∴EH=,
在Rt△DEH中,DH=,
∴tan∠DEH=.
故选:A.
练习册系列答案
相关题目