题目内容
如图所示,AB是⊙O直径,OD⊥弦BC于点F,且交⊙O于点E,若∠AEC=∠ODB.
(1)判断直线BD和⊙O的位置关系,并给出证明;
(2)当AB=10,BC=8时,求BD的长.
解:(1)直线BD和⊙O相切
证明:∵∠AEC=∠ODB,∠AEC=∠ABC
∴∠ABC=∠ODB
∵OD⊥BC
∴∠DBC+∠ODB=90°
∴∠DBC+∠ABC=90°
∴∠DBO=90°
∴直线BD和⊙O相切.
(2)连接AC
∵AB是直径
∴∠ACB=90°
在Rt△ABC中,AB=10,BC=8
∴
∵直径AB=10
∴OB=5.
由(1),BD和⊙O相切
∴∠OBD=90°
∴∠ACB=∠OBD=90°
由(1)得∠ABC=∠ODB,
∴△ABC∽△ODB
∴
∴,解得BD=.
分析:(1)因为同弧所对的圆周角相等,所以有∠AEC=∠ABC,又∠AEC=∠ODB,所以∠ABC=∠ODB,OD⊥弦BC,即∠ABC+∠BOD=90°,则有∠ODB+∠BOD=90°,即BD垂直于AB,所以BD为切线.
(2)连接AC,由于AB为直径,所以AC和BC垂直,又由(1)知∠ABC=∠ODB,所以有△ACB∽△OBD,而AC可由勾股定理求出,所以根据对应线段成比例求出BD.
点评:此题主要考查了切线的判定以及相似三角形的判定的综合运用.
证明:∵∠AEC=∠ODB,∠AEC=∠ABC
∴∠ABC=∠ODB
∵OD⊥BC
∴∠DBC+∠ODB=90°
∴∠DBC+∠ABC=90°
∴∠DBO=90°
∴直线BD和⊙O相切.
(2)连接AC
∵AB是直径
∴∠ACB=90°
在Rt△ABC中,AB=10,BC=8
∴
∵直径AB=10
∴OB=5.
由(1),BD和⊙O相切
∴∠OBD=90°
∴∠ACB=∠OBD=90°
由(1)得∠ABC=∠ODB,
∴△ABC∽△ODB
∴
∴,解得BD=.
分析:(1)因为同弧所对的圆周角相等,所以有∠AEC=∠ABC,又∠AEC=∠ODB,所以∠ABC=∠ODB,OD⊥弦BC,即∠ABC+∠BOD=90°,则有∠ODB+∠BOD=90°,即BD垂直于AB,所以BD为切线.
(2)连接AC,由于AB为直径,所以AC和BC垂直,又由(1)知∠ABC=∠ODB,所以有△ACB∽△OBD,而AC可由勾股定理求出,所以根据对应线段成比例求出BD.
点评:此题主要考查了切线的判定以及相似三角形的判定的综合运用.
练习册系列答案
相关题目