题目内容
【题目】阅读材料,在平面直角坐标系中,已知x轴上两点A(x1,0),B(x2,0)的距离记作AB=|x1﹣x2|;若A,B是平面上任意两点,我们可以通过构造直角三角形来求AB间的距离,如图,过A,B分别向x轴、y轴作垂线AM1、AN1和BM2、BN2,垂足分别是M1、N1、M2、N2,直线AN1交BM2于点Q,在Rt△ABQ中,AQ=|x1﹣x2|,BQ=|y1﹣y2|,∴AB2=AQ2+BQ2=|x1﹣x2|+|y1﹣y2|2=(x1﹣x2)2+(y1﹣y2)2,由此得到平面直角坐标系内任意两点A(x1,y1),B(x2,y2)间的距离公式为:
(1)AB= .
(2)直接应用平面内两点间距离公式计算点A(1,﹣3),B(﹣2,1)之间的距离为 ;
(3)根据阅读材料并利用平面内两点间的距离公式,求代数式的最小值.
【答案】(1);(2)5;(3)
【解析】分析:(1)通过作铅垂线构造直角三角形,利用勾股定理进行求解即可,
(2)根据(1)结论代入两点坐标计算即可,(3) 代数式+的最小值表示在x轴上找一点P(x,0),到A(0,2),B(3,1)的距离之和最小,可以通过作对称转化为两点间线段距离最短,再利用两点之间距离公式计算即可求解.
详解:(1)∵AB2=AQ2+BQ2=|x1﹣x2|2+|y1﹣y2|2=(x1﹣x2)2+(y1﹣y2)2,
∴AB=,故答案为.
(2)∵A(1,﹣3),B(﹣2,1),
∴AB==5,故答案为5.
(3)代数式+的最小值表示在x轴上找一点P(x,0),到A(0,2),B(3,1)的距离之和最小,如图,
作A关于x轴的对称点A′,连接BA′与x轴的交点即为所求的点P.此时PA+PB最小,
∵A′(0,﹣2),B(3,1),
∴PA+PB=PA′+PB=BA′==3
∴代数式+的最小值为3.
【题目】“十 一”黄金周期间,我市庐山风景区在7天假期中每天旅游的人数变化如下表(正数表示比前一天多的人数,负数表示比前一天少的人数)
日期 | 1日 | 2日 | 3日 | 4日 | 5日 | 6日 | 7日 |
人数变化 单位:万人 | +1.6 | +0.8 | +0.4 | -0.4 | -0.8 | +0.2 | -1.2 |
(1)、若9月30日的游客人数记为n,请用含n的代数式表示10月2日的游客________万人。
(2)、请判断七天内游客人数最多的是_______日;最少的是______日;它们相差_____万人。
(3)、以9月30日的游客人数为0点,用折线统计图表示这7天的游客人数变化情况:
【题目】为了鼓励市民节约用水,某市水费实行分段计费制,每户每月用水量在规定用量及以下的部分收费标准相同,超出规定用量的部分收费标准相同.例如:若规定用量为10吨,每月用水量不超过10吨按1.5元/吨收费,超出10吨的部分按2元/吨收费,则某户居民一个月用水8吨,则应缴水费:8×1.5=12(元);某户居民一个月用水13吨,则应缴水费:10×1.5+(13﹣10)×2=21(元).
表是小明家1至4月份用水量和缴纳水费情况,根据表格提供的数据,回答:
月份 | 一 | 二 | 三 | 四 |
用水量(吨) | 6 | 7 | 12 | 15 |
水费(元) | 12 | 14 | 28 | 37 |
(1)该市规定用水量为 吨,规定用量内的收费标准是 元/吨,超过部分的收费标准是 元/吨.
(2)若小明家五月份用水20吨,则应缴水费 元.
(3)若小明家六月份应缴水费46元,则六月份他们家的用水量是多少吨?