题目内容
【题目】如图,OA,OB是⊙O的两条半径,OA⊥OB,C是半径OB上的一动点,连接AC并延长交⊙O于D,过点D作直线交OB延长线于E,且DE=CE,已知OA=8.
(1)求证:ED是⊙O的切线;
(2)当∠A=30°时,求CD的长.
【答案】(1)证明见解析;(2).
【解析】
(1)如图连接OD.欲证明DE是切线,只要证明OD⊥DE即可;
(2)解直角三角形求出OC,只要证明CD=OC即可解决问题;
(1)证明:如图连接OD.
∵OA=OD,∴∠A=∠ODA.
∵OA⊥OB,∴∠AOB=90°,∴∠A+∠ACO=90°.
∵ED=EB,∴∠EDB=∠EBD=∠ACO,∴∠ODA+∠EDC=90°,∴OD⊥DE,∴DE是⊙O的切线.
(2)在Rt△AOC中,∵OA=8,∠A=30°,∴OC=OAtan30°=.
∵OA=OD,∴∠ODA=∠A=30°,∠DOA=120°,∠DOC=30°,∴∠DOC=∠ODC=30°,∴CD=OC=.
练习册系列答案
相关题目