题目内容

【题目】如图所示,E.F分别是正方形ABCD的边CD,AD上的点,且CE=DF,AE,BF相交于点O,下列结论①AE=BF;②AE⊥BF;③AO=OE;④S△AOB=S四边形DEOF中,错误的有(  )
A.1个
B.2个
C.3个
D.4个

【答案】A
【解析】

∵四边形ABCD是正方形,

∴CD=AD

∵CE=DF

∴DE=AF

∴△ADE≌△BAF

∴①AE=BF,S△ADE=S△BAF,∠DEA=∠AFB,∠EAD=∠FBA

∴④S△AOB=S四边形DEOF

∵∠ABF+∠AFB=∠DAE+∠DEA=90°

∴∠AFB+∠EAF=90°

∴②AE⊥BF一定成立.

错误的结论是:③AO=OE.

故选A

根据四边形ABCD是正方形及CE=DF,可证出△ADE≌△BAF,则得到:①AE=BF,以及△ADE和△BAF的面积相等,得到;④S△AOB=S四边形DEOF;可以证出∠ABO+∠BAO=90°,则②AE⊥BF一定成立.错误的结论是:③AO=OE.本题考查了全等三角形的判定和正方形的判定和性质

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网