题目内容

【题目】把球放在长方体纸盒内,球的一部分露出盒外,其截面如图所示,已知,则球的半径长是(

A. 2B. 2.5C. 3D. 4

【答案】B

【解析】

EF的中点M,作MNAD于点M,取MN上的球心O,连接OF,设OF=x,则OM=4-xMF=2,然后在RtMOF中利用勾股定理求得OF的长即可.

如图:

EF的中点M,作MNAD于点M,取MN上的球心O,连接OF

∵四边形ABCD是矩形,

∴∠C=D=90°

∴四边形CDMN是矩形,

MN=CD=4

OF=x,则ON=OF

OM=MN-ON=4-xMF=2

在直角三角形OMF中,OM2+MF2=OF2

即:(4-x2+22=x2

解得:x=2.5

故选:B

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网