题目内容
【题目】如图,两条射线BA//CD,PB和PC分别平分∠ABC和∠DCB,AD过点P,分别交AB,CD与点A,D.
(1)求∠BPC的度数;
(2)若,求AB+CD的值;
(3)若为a,为b,为c,求证:a+b=c.
【答案】(1)90°;(2)4;(3)证明见解析
【解析】
(1)根据角平分线定义和平行线的性质,可得∠PBC+∠PCB的值,于是可求∠BPC的值;
(2)在△ABP,△PCD和△BCP中,利用特殊角在直角三角形中的边关系可求AB+CD的值.
(3)利用角平分线性质作垂直证明全等,通过割法获得面积关系.
(1)∵BA∥CD,∴∠ABC+∠BCD=180°.
∵PB和PC分别平分∠ABC和∠DCB,∴∠PBC∠ABC,∠PCB∠BCD,∴∠PBC+∠PCB(∠ABC+∠BCD)=90°,∴∠BPC=90°;
(2)若∠BCD=60°,BP=2,∴∠ABC=180°-60°=120°,∠PCD∠BCD=30°,∴∠ABP∠ABC=60°.
在Rt△ABP中,BP=2,AB=1.在Rt△BCP中,CP=2.在Rt△PCD中,PD,CD=3,∴AB+CD=4.
(3)如图,作PQ⊥BC.
∵∠ABP=∠QBP,∠BAP=∠BQP,BP=BP.
∴△ABP≌△BQP(AAS).
同理△PQC≌△PCD(AAS),∴S△BCP=S△BPQ+S△PQC=S△ABP+S△PCD,∴a+b=c.
练习册系列答案
相关题目