题目内容
【题目】学习整式的乘法时可以发现:用两种不同的方法表示同一个图形的面积,可以得到一个等式,进而可以利用得到的等式解决问题.
图1 图2
(1)如图1是由边长分别为a,b的正方形和长为a、宽为b的长方形拼成的大长方形,由图1,可得等式:(a+2b)(a+b)= ;
(2)①如图2是由几个小正方形和小长方形拼成的一个边长为a+b+c的大正方形,用不同的方法表示这个大正方形的面积,得到的等式为 ;
②已知a+b+c=11,ab+bc+ac=38,利用①中所得到的等式,求代数式a2+b2+c2的值.
【答案】(1)a2+3ab+2b2;(2)① (a+b+c)2=a2+b2+c2+2ab+2bc+2ac;②45
【解析】试题分析:(1)图1是由一个边长为a的正方形、一个边长为b的正方形和三个长为a,宽为b的长方形组成,所以面积为a2+3ab+2b2;
(2)①
试题解析:图2是由三个边长分别为a、b、c的正方形、两个边长分别为a、b的长方形,两个边长分别为a、c的长方形,两个边长分别为b、c的长方形组成,所以等式为(a+b+c)2=a2+b2+c2+2ab+2bc+2ac;
②将①的等式变形为(a+b+c)2=a2+b2+c2+2(ab+bc+ac),代入数值即可.
(1)a2+3ab+2b2;
(2)① (a+b+c)2=a2+b2+c2+2ab+2bc+2ac;
②解:由①,得(a+b+c)2=a2+b2+c2+2(ab+bc+ac).
因为a+b+c=11,ab+bc+ac=38.
所以112=a2+b2+c2+2×38.
所以a2+b2+c2=45.
故答案为:(1)a2+3ab+2b2;(2)① (a+b+c)2=a2+b2+c2+2ab+2bc+2ac;②45.
【题目】意大利著名数学家斐波那契在研究兔子繁殖问题时,发现有这样一组数:1,1,2,3,5,8,13,…,其中从第三个数起,每一个数都等于它前面两个数的和.现以这组数中的各个数作为正方形的边长值构造如下正方形:
再分别依次从左到右取2个、3个、4个、5个…正方形拼成如下长方形并记为①、②、
③、④、 …相应长方形的周长如下表所示:
序号 | ① | ② | ③ | ④ | … |
周长 | 6 | 10 | … |
仔细观察图形,上表中的 , .
若按此规律继续作长方形,则序号为⑧的长方形周长是 。