题目内容
【题目】平面直角坐标系中,点P(x,y)的横坐标x的绝对值表示为|x|,纵坐标y的绝对值表示为|y|,我们把点P(x,y)的横坐标与纵坐标的绝对值之和叫做点P(x,y)的勾股值,记为「P」,即「P」=+.(其中的“+”是四则运算中的加法)
(1)求点A(﹣1,3),B(,)的勾股值「A」、「B」;
(2)点M在反比例函数的图象上,且「M」=4,求点M的坐标;
(3)求满足条件「N」=3的所有点N围成的图形的面积.
【答案】(1)「A」=4,「B」=4;(2)M(1,3)或M(﹣1,﹣3)或M(3,1)或M(﹣3,﹣1);(3)18.
【解析】
试题分析:(1)由勾股值的定义即可求解;
(2)点M在反比例函数的图象上,且「M」=4,列方程组即可得到结果;
(3)设N点的坐标为(x,y),由「N」=3,得到方程|x|+|y|=3,得到x+y=3,﹣x﹣y=3,x﹣y=3,﹣x+y=3,化为一次函数的解析式y=﹣x+3,y=﹣x﹣3,y=x﹣3,y=x+3,于是得到所有点N围成的图形是边长为的正方形,则面积可求.
试题解析:(1)∵A(﹣1,3),B(,),∴「A」=|﹣1|+|3|=4,「B」==4;
(2)设:点M的坐标为(m,n),由题意得:由题意得,解得:或或或,∴M(1,3),(﹣1,﹣3),(3,1),(﹣3,﹣1);
(3)设N点的坐标为(x,y),∵「N」=3,∴|x|+|y|=3,∴x+y=3,﹣x﹣y=3,x﹣y=3,﹣x+y=3,∴y=﹣x+3,y=﹣x﹣3,y=x﹣3,y=x+3,如图:所有点N围成的图形的面积==18.
练习册系列答案
相关题目