题目内容
【题目】一台电视机的原价是a元,现按原价的9折出售,则这台电视机现在的售价为________.
【答案】90%a
【解析】90%a元
【题目】甲、乙两同学的家与学校的距离均为3000米.甲同学先步行600米,然后乘公交车去学校、乙同学骑自行车去学校.已知甲步行速度是乙骑自行车速度的,公交车的速度是乙骑自行车速度的2倍.甲乙两同学同时从家发去学校,结果甲同学比乙同学早到2分钟.
(1)求乙骑自行车的速度;
(2)当甲到达学校时,乙同学离学校还有多远?
【题目】甲、乙在400米的直线跑道上从同一地点同向匀速跑步,先到终点的人原地休息.已知甲先出发3秒,跑步过程中两人的距离y(米)与乙出发的时间t(秒)之间的关系如图所示,则下列结论正确的是( )
A. 乙的速度是4米/秒
B. 离开起点后,甲、乙两人第一次相遇时,距离起点12米
C. 甲从起点到终点共用时83秒
D. 乙到达终点时,甲、乙两人相距68米
【题目】一个正多边形的每一个外角都是36°,则这个正多边形的边数是 .
【题目】无论m为何实数,直线y=x+2m与y=-x+4的交点不可能在( )
A. 第一象限B. 第二象限C. 第三象限D. 第四象限
【题目】如图,直线OC,BC的函数关系式分别是y1=x和y2=-x+6,两直线的交点为C.
(1)求点C的坐标,并直接写出y1>y2时x的范围;
(2)在直线y1上找点D,使△DCB的面积是△COB的一半,求点D的坐标;
(3)点M(t,0)是轴上的任意一点,过点M作直线l⊥轴,分别交直线y1、 y2于点E、F,当E、F两点间的距离不超过4时,求t的取值范围.
【题目】某商品进货单价为30元,按40元一个销售能卖40个;若销售单价每涨1元,则销量减少1个.为了获得最大利润,此商品的最佳售价应为__元.
【题目】买单价为a元的体温计n个,付出b元,应找回的钱数是( )
A. (b-na)元 B. (b-n)元 C. (na-b)元 D. (b-a)元
【题目】为了解外来务工子女就学情况,某校对七年级各班级外来务工子女的人数情况进行了统计,发现各班级中外来务工子女的人数有1名、2名、3名、4名、5名、6名共六种情况,并制成如下两幅统计图:
(1)求该校七年级平均每个班级有多少名外来务工子女?并将该条形统计图补充完整;
(2)学校决定从只有2名外来务工子女的这些班级中,任选两名进行生活资助,请用列表法或画树状图的方法,求出所选两名外来务工子女来自同一个班级的概率.